Hyperbolic Tangent1 DL #3 : 딥러닝 활성화 함수 종류 및 특징 (Activation Function) 활성화 함수는 Transfer Function 으로부터 전달 받은 값을 출력할 때 일정 기준에 따라 출력값을 변화시키는 비선형 함수입니다. 활성화 함수를 통해 출력 값을 0~1 사이의 실수 값으로 정규화해 확률적 개념으로 사용 가능합니다. 비선형함수는 직선으로 표현할 수 없는 데이터 사이의 관계도 표현할 수 있습니다. 대표적인 활성화 함수는 Sigmoid, tanh, ReLU 입니다. 계단 함수 (Step Function) 계단 함수는 선형 함수의 결과를 이진 분류로 나타내기 위한 함수로, 임계치 이상에서 1, 아니면 0을 출력합니다. 시그모이드 (Sigmoid) 시그모이드는 선형함수의 결과를 0~1 까지의 비선형 형태로 변형하기 위한 함수입니다. 해당 함수는 로지스틱 회귀와 같은 분류 문제의 확률 표현.. 2020. 5. 4. 이전 1 다음